Descargar 134.92 Kb.


Página6/9
Fecha de conversión28.03.2018
Tamaño134.92 Kb.

Descargar 134.92 Kb.

LA GENERACIÓN AUTOMÁTICA DE EJEMPLOS Y ENTRENAMIENTO DE LA RED NEURONAL


1   2   3   4   5   6   7   8   9

5. LA GENERACIÓN AUTOMÁTICA DE EJEMPLOS Y ENTRENAMIENTO DE LA RED NEURONAL

La solución contemplada en la metodología RENEVA para el suministro de ejemplos a la red neuronal para su entrenamiento, es su generación informática, mediante un generador de datos aleatorios, sometidos a filtrado para que recojan únicamente valores posibles en el mundo real, que son tratados mediante la técnica que se quiere complementar al objeto de obtener la “salida” (clasificación propuesta) que dicha técnica proporcionaría.

Cada ejemplo generado consta de siete datos de entrada (1. Edad, 2. Estado civil, 3. Profesión, 4. Antigüedad en el empleo, 5. Ingresos anuales, 6. Vivienda y 7. Zona residencia) y el vector de salida deseado (Y) cuyos componentes están a cero, salvo el correspondiente al nodo que se debe activar, cuyo valor es 1.

Como hemos indicado, para cada uno de dichos campos, hemos establecido algunas limitaciones, con el fin de hacerlo lo más parecido al mundo real. En las aplicaciones que pretendan su empleo por una empresa concreta, las restricciones serán mucho más exigentes, al objeto de representar fielmente las características reales de los casos utilizados para obtener la función discriminante; en nuestro caso, dado que el objetivo de nuestro trabajo es demostrar la utilidad de la RNV para emular un credit score y no la eficacia de éste, basta con unas cuantas que muestren el camino a seguir:



  • Edad: comprendida entre los 18 y los 70 años (en la aplicación real se ajustarían los límites).

  • Estado civil: Casado u otro estado (soltero, viudo, separado, etc.), estableciendo una distribución equitativa entre ambos grupos.

  • Profesión: Se han establecido tres categorías: con sus siguientes porcentajes de participación en el fichero final: Altos cargos (15%), mandos intermedios (40%) y personal sin cualificar (45%). Asimismo hemos establecido limitaciones en cuanto a la edad, de forma que el status profesional y la edad guarden una relación razonable.

  • Ingresos: Están relacionados con la profesión de tal forma que al grupo más bajo, le hemos asignado retribuciones comprendidas entre 0 y 3 millones, al grupo intermedio entre 3 y 6 y a los altos cargos le hemos asignado retribuciones superiores a los 6 millones.

  • Antigüedad en el puesto de trabajo: Hemos puesto como tope 50 años, asimismo se ha relacionado con la edad y con los ingresos, de tal manera que la antigüedad más la edad supuesta de incorporación al puesto de trabajo nunca pueda ser superior a la edad actual. También hemos requerido que para unos ingresos inferiores a 1 millón, la antigüedad sea inferior al año.

  • Vivienda: Se han contemplado dos casos, que sea propia (la mitad de los casos) o que sea alquilada (la otra mitad).

  • Zona de residencia: Hemos establecido tres zonas con la siguiente distribución: Zona Alta (15 %), media (40 %) y baja (45 %).

Hemos generado 100.000 ejemplos, a los que aplicamos los criterios de ponderación y una vez obtenido el credit score, clasificamos en “solventes”, “de riesgo” e “insolventes”. Posteriormente comprobamos que la distribución de los resultados es la que muestra la tabla siguiente (en una aplicación práctica, debería reflejar la observada en la realidad):



Categoría

Insolvente

Con riesgo

Solvente

Porcentaje de Clientes

2'2 %

25'0 %

72'8 %

Ahora bien, al objeto de garantizar el poder de clasificación de la RNV, y para lograr un entrenamiento relativamente rápido, seleccionamos aleatoriamente, de dicho fichero, una muestra homogénea de ejemplos de las tres categorías para conformar dos ficheros de 3.000 ejemplos (1.000 de cada tipo) cada uno. Con ello logramos garantizar que todas las categorías están representadas de forma semejante, evitando sesgos posiblemente perniciosos11. El primer fichero fue empleado en el entrenamiento mientras que el segundo se utilizó para validar la Red una vez entrenada.


Para proceder al entrenamiento, hemos confeccionado un algoritmo, que contempla los pasos siguientes:

  • Iniciar los pesos aleatoriamente. Para el primer paso, se procede a asignar a todos los pesos valores aleatorios muy pequeños para evitar saturaciones iniciales en la Red. Así, nosotros iniciamos el entrenamiento con valores entre  0,4 y +0,4. Debe evitarse asignar el mismo valor inicial a todos los pesos, por ejemplo darles a todos el valor cero, pues representa un serio obstáculo para que la RNV pueda aprender.

  • Presentar a la red neuronal un vector de entradas con su salida correspondiente, extraído del fichero de ejemplos.

  • Calcular la salida de la red.

  • Calcular la desviación entre la salida de la red y la deseada.

  • Modificar los pesos sinápticos con el fin de minimizar el error.

  • Repetir los pasos 2 al 5 para todos el conjunto de entrenamiento; es lo que se denomina “época de entrenamiento”.

  • Repetir las épocas de entrenamiento hasta que el error se reduce convenientemente.

Para nuestros fines, es suficiente con que el nodo cuyo Yk vale 1, alcance un valor máximo entre todos los de salida, lo cual será signo inequívoco de que es el seleccionado por la Red. Por tanto, la Red puede mostrar un funcionamiento razonable sin que sea necesario que el error total de la capa de salida sea cero, lo que facilita la convergencia a una solución adecuada, que se manifestará cuando el número de veces que durante una época la Red apunta al nodo correcto es suficientemente alto.

En definitiva, durante el periodo de entrenamiento atenderemos a dos tipos de errores, el error obtenido mediante la Ecuación 3, cuya propagación hacia atrás permitirá ajustar la Red, y el correspondiente al número de veces en que el nodo elegido no es el correcto, que es el que nos permitirá detener el entrenamiento al alcanzar un valor razonable, sin exponernos al sobre-entrenamiento12.




Donde Salidak es la activación del nodo “k” de la capa de salidas,
e Yk es el “k ésimo” componente del vector Y.

Ilustración 5: Ecuación 3


El entrenamiento de nuestra Red fue detenido al alcanzar un porcentaje de aciertos estabilizado en el 93%; un porcentaje notable si se tiene en cuenta el ruido inducido de forma premeditada en el algoritmo de entrenamiento, para aumentar la capacidad de generalización de la Red.



1   2   3   4   5   6   7   8   9

Similar:

Nueva herramienta para la gestión: Medición de la probabilidad de insolvencia, asistida por Redes Neuronales. Dra. Nélida Porto Serantes iconRedes neuronales de unidades producto
Las redes neuronales en unidades producto: teoría del modelo y su aplicación a problemas de clasificación del riesgo
Nueva herramienta para la gestión: Medición de la probabilidad de insolvencia, asistida por Redes Neuronales. Dra. Nélida Porto Serantes iconModelado de la frecuencia fundamental mediante redes neuronales para síntesis de voz en dominio restringido
Excel es uno de los componentes básicos de Office, es una aplicación englobada dentro de la categoría de hojas de cálculo, y sin...
Nueva herramienta para la gestión: Medición de la probabilidad de insolvencia, asistida por Redes Neuronales. Dra. Nélida Porto Serantes iconDistribuciones de probabilidad
En la unidad anterior se analizó el concepto de probabilidad. El objetivo era determinar la probabilidad de un evento. En esta unidad...
Nueva herramienta para la gestión: Medición de la probabilidad de insolvencia, asistida por Redes Neuronales. Dra. Nélida Porto Serantes iconProbabilidad
Sabiendo que es abedul, la probabilidad de que esté sano es 8 y sabiendo que es abeto, la probabilidad de que esté enfermo es de
Nueva herramienta para la gestión: Medición de la probabilidad de insolvencia, asistida por Redes Neuronales. Dra. Nélida Porto Serantes iconAnálisis de redes sociales 3 cr
Análisis de redes sociales”. En esta nueva edición se contará con la participación de especialistas procedentes de otras Universidades,...
Nueva herramienta para la gestión: Medición de la probabilidad de insolvencia, asistida por Redes Neuronales. Dra. Nélida Porto Serantes iconActa nº 005-2018-cf acta de Sesión Ordinaria del Consejo de Facultad de la Facultad de Ciencias de la Salud
Allao, bajo la presidencia de la Decana Dra. Arcelia Olga Rojas Salazar, Dra. Angélica Díaz Tinoco, Dra. Ana Lucy Siccha Macassi,...
Nueva herramienta para la gestión: Medición de la probabilidad de insolvencia, asistida por Redes Neuronales. Dra. Nélida Porto Serantes iconNueva Iniciativa Utiliza el Bambú como Herramienta Clave para Combatir la Pobreza y el Cambio Climático en America Latina

Nueva herramienta para la gestión: Medición de la probabilidad de insolvencia, asistida por Redes Neuronales. Dra. Nélida Porto Serantes iconFormulario nivel 3 Definiciones iniciales para la medicion de actividades de vinculaciÓn (AV)
Av se encuentren desplegadas en múltiples espacios académicos y niveles de gestión y que no sean visibles de manera homogénea. Por...
Nueva herramienta para la gestión: Medición de la probabilidad de insolvencia, asistida por Redes Neuronales. Dra. Nélida Porto Serantes iconPrograma para la transformación de las redes de salud y eficiencia de la gestión sanitaria

Nueva herramienta para la gestión: Medición de la probabilidad de insolvencia, asistida por Redes Neuronales. Dra. Nélida Porto Serantes iconControl de la gestión basada en actividades
Los tableros de control permiten abordar visiones integrales de la realidad empresarial; como instrumento operativo se constituye...

Página principal
Contactos

    Página principal



LA GENERACIÓN AUTOMÁTICA DE EJEMPLOS Y ENTRENAMIENTO DE LA RED NEURONAL

Descargar 134.92 Kb.