Descargar 134.92 Kb.


Página4/9
Fecha de conversión28.03.2018
Tamaño134.92 Kb.

Descargar 134.92 Kb.

ELECCIÓN DEL CREDIT SCORING A COMPLEMENTAR


1   2   3   4   5   6   7   8   9

3. ELECCIÓN DEL CREDIT SCORING A COMPLEMENTAR.

Para esta demostración, se ha seleccionado un credit scoring sencillo, tomado de Santandreu (1994, pág. 25 y ss.), que es el que, por tanto, emplearemos como referente para construir la Red Neuronal Virtual de apoyo.

Naturalmente, a las variables contempladas se podrían añadir otras muchas (por ejemplo, tener teléfono, el modelo y año del coche, etc.), amen de otras que podrían ser más representativas en el caso de solicitantes de carácter empresarial (por ejemplo, ratios de solvencia, liquidez y rentabilidad), pero ello no supondría ninguna diferencia para nuestro objetivo que no es determinar el mejor credit scoring, sino comprobar la posibilidad de obtener una RNV que lo complemente en situaciones de ausencia de algún dato.

En todo caso, en posibles aplicaciones empresariales que se hagan con la metodología que estamos presentando, se deberá tener en cuenta el credit scoring que la empresa en cuestión pudiera tener en funcionamiento, o lo que es lo mismo, las variables contempladas en la función discriminante real que se considere.

El credit scoring que vamos a emplear, tiene como variables las contenidas en el cuestionario (que se destina a recoger la información del solicitante) siguiente, en el cual se muestran las valoraciones numéricas que se asociarán con cada una de las respuestas permitidas:

Ilustración 2: Cuestionario del credit scoring elegido


Respecto a los criterios de ponderación establecidos por la función discriminante, Santandreu propone los siguientes (1994, pág. 26): Edad = 0,5; Estado civil = 1; Profesión = 3; Antigüedad en el último empleo = 0,5; Ingresos anuales = 1,5;Vivienda = 3 y Zona residencia = 10. Una vez ponderados los datos obtenidos en el cuestionario, a través de la aplicación de los criterios de ponderación, se procede a su agregación para obtener una valoración final, el credit score, cuyo proceso de obtención es sintetizado en el cuadro siguiente:

Tabla 1: Obtención del "credit score"



Variables:

DATOS DEL CLIENTE



PONDERACIÓN

(A)


RESPUESTAS
(B)

VALOR PONDERADO

(C= A X B)



1. Edad

0,5

X1­

Y1

2. Estado civil

1

X2

Y2

3. Profesión

3

X3

Y3

4. Antigüedad empleo

0,5

X4

Y4

5. Ingresos anuales

1,5

X5

Y5

6. Vivienda

3

X6

Y6

7. Zona residencia

10

X7

Y7




Suma = Credit

Score

 Yi

Finalmente, la Tabla de Clasificación con las clases definidas en función de la puntuación obtenida es la siguiente:


Tabla 2: Tabla de Clasificaciones

ESCALA DEL “CREDIT SCORE”

CLASIFICACIÓN

DECISIÓN A ADOPTAR

De 0 a 70 70

De 71 a 10071 a 100

Superior a 101 101


Insolvente

Con riesgo.

Solvente


Negar el crédito

Solicitar más datos

Otorgar el crédito.

En resumen, una vez obtenido el credit score, se procede a comparar dicha puntuación, con los datos contenidos en la tabla de clasificación confeccionada por la empresa, con objeto de encuadrar el resultado obtenido en alguno de los agrupamientos establecidos a priori, sirviendo de base a la decisión de conceder o denegar el crédito.




1   2   3   4   5   6   7   8   9

Similar:

Nueva herramienta para la gestión: Medición de la probabilidad de insolvencia, asistida por Redes Neuronales. Dra. Nélida Porto Serantes iconRedes neuronales de unidades producto
Las redes neuronales en unidades producto: teoría del modelo y su aplicación a problemas de clasificación del riesgo
Nueva herramienta para la gestión: Medición de la probabilidad de insolvencia, asistida por Redes Neuronales. Dra. Nélida Porto Serantes iconModelado de la frecuencia fundamental mediante redes neuronales para síntesis de voz en dominio restringido
Excel es uno de los componentes básicos de Office, es una aplicación englobada dentro de la categoría de hojas de cálculo, y sin...
Nueva herramienta para la gestión: Medición de la probabilidad de insolvencia, asistida por Redes Neuronales. Dra. Nélida Porto Serantes iconDistribuciones de probabilidad
En la unidad anterior se analizó el concepto de probabilidad. El objetivo era determinar la probabilidad de un evento. En esta unidad...
Nueva herramienta para la gestión: Medición de la probabilidad de insolvencia, asistida por Redes Neuronales. Dra. Nélida Porto Serantes iconProbabilidad
Sabiendo que es abedul, la probabilidad de que esté sano es 8 y sabiendo que es abeto, la probabilidad de que esté enfermo es de
Nueva herramienta para la gestión: Medición de la probabilidad de insolvencia, asistida por Redes Neuronales. Dra. Nélida Porto Serantes iconAnálisis de redes sociales 3 cr
Análisis de redes sociales”. En esta nueva edición se contará con la participación de especialistas procedentes de otras Universidades,...
Nueva herramienta para la gestión: Medición de la probabilidad de insolvencia, asistida por Redes Neuronales. Dra. Nélida Porto Serantes iconActa nº 005-2018-cf acta de Sesión Ordinaria del Consejo de Facultad de la Facultad de Ciencias de la Salud
Allao, bajo la presidencia de la Decana Dra. Arcelia Olga Rojas Salazar, Dra. Angélica Díaz Tinoco, Dra. Ana Lucy Siccha Macassi,...
Nueva herramienta para la gestión: Medición de la probabilidad de insolvencia, asistida por Redes Neuronales. Dra. Nélida Porto Serantes iconNueva Iniciativa Utiliza el Bambú como Herramienta Clave para Combatir la Pobreza y el Cambio Climático en America Latina

Nueva herramienta para la gestión: Medición de la probabilidad de insolvencia, asistida por Redes Neuronales. Dra. Nélida Porto Serantes iconFormulario nivel 3 Definiciones iniciales para la medicion de actividades de vinculaciÓn (AV)
Av se encuentren desplegadas en múltiples espacios académicos y niveles de gestión y que no sean visibles de manera homogénea. Por...
Nueva herramienta para la gestión: Medición de la probabilidad de insolvencia, asistida por Redes Neuronales. Dra. Nélida Porto Serantes iconPrograma para la transformación de las redes de salud y eficiencia de la gestión sanitaria

Nueva herramienta para la gestión: Medición de la probabilidad de insolvencia, asistida por Redes Neuronales. Dra. Nélida Porto Serantes iconControl de la gestión basada en actividades
Los tableros de control permiten abordar visiones integrales de la realidad empresarial; como instrumento operativo se constituye...

Página principal
Contactos

    Página principal



ELECCIÓN DEL CREDIT SCORING A COMPLEMENTAR

Descargar 134.92 Kb.